Exercise 07 - Remote Commands - Script 6

Goal:

The goal of this exercise is to create a shell script that executes a given command on multiple
servers.

Scenario:

The number of systems you manage is growing and you need a way to quickly execute the exact
same command on all of your systems. Because it takes too much of your time to type the same
command on every single system you manage, you decide to write a script that will do this for you.

Shell Script Requirements:

You think about what the shell script must do and how you would like it operate. You come up with
the following list.

The script:
Is named "run-everywhere.sh".
Executes all arguments as a single command on every server listed in the
/vagrant/servers file by default.

e Executes the provided command as the user executing the script.

Uses "ssh -0 ConnectTimeout=2" to connect to a host. This way if a host is down, the script
doesn't hang for more than 2 seconds per down server.

e Allows the user to specify the following options:

o -f FILE This allows the user to override the default file of /vagrant/servers. This way
they can create their own list of servers execute commands against that list.

o -n This allows the user to perform a "dry run" where the commands will be displayed
instead of executed. Precede each command that would have been executed with
"DRY RUN: ".

-s Run the command with sudo (superuser) privileges on the remote servers.
-v Enable verbose mode, which displays the name of the server for which the
command is being executed on.

e Enforces that it be executed without superuser (root) privileges. If the user wants the remote
commands executed with superuser (root) privileges, they are to specify the -s option.

e Provides a usage statement much like you would find in a man page if the user does not
supply a command to run on the command line and returns an exit status of 1. All messages
associated with this event will be displayed on standard error.

Informs the user if the command was not able to be executed successfully on a remote host.
Exits with an exit status of 0 or the most recent non-zero exit status of the ssh command.

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Create Three Virtual Machines:

First, start a command line session on your local machine. Next, move into the working folder you
created for this course.

cd shellclass

Initialize the vagrant project using the usual process of creating a directory, changing into that
directory, and running "vagrant init". We'll name this vagrant project "multinet".

mkdir multinet
cd multinet
vagrant init jasonc/centos7

Configure the Virtual Machines

Here are the details on the three virtual machines that you are going to create:
Name IP Address

adminO1 10.9.8.10

serverO1 10.9.8.11

server02 10.9.8.12

Edit the Vagrantfile and create three stanzas of configuration. One for each virtual machine.

config.vm.define "admin0l" do |admin®1|

admin@l.vm.hostname = "admin@1"
admin@l.vm.network "private_network", dip: "10.9.8.10"
end

config.vm.define "server0l" do |server0Ol|
server@l.vm.hostname = "serverQl"
server@l.vm.network "private_network", dip: "10.9.8.11"
end

config.vm.define "server02" do |server02|
server02.vm.hostname = "server02"
server02.vm.network "private_network", ip: "10.9.8.12"
end

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Start the Virtual Machines and Log into admin0O1

Now you're ready to start the VMs and connect to it adminO1.

vagrant up
vagrant ssh admin0Ol

Add Host Entries for server01 and server02

You can manually edit the /etc/hosts file using root privileges or use the following commands to add
the lines to the /etc/hosts file.

echo 10.9.8.11 server0l | sudo tee -a /etc/hosts
echo 10.9.8.12 server02 | sudo tee -a /etc/hosts

Ensure You Can Ping the Virtual Machines by Name

Use the ping command to ensure you can communicate to the virtual machines by name. You
want to see a reply from the IP address of 10.9.8.11 from server01 and 10.9.8.12 from server02. If
that is not the case, correct the /etc/hosts entries and/or make sure the virtual machines are running.

Here is an example. (Portions typed are in bold.)

[vagrant@admin®l ~]$ ping -c 1 serverol
PING server0l (10.9.8.11) 56(84) bytes of data.
64 bytes from server0l (10.9.8.11): +dicmp_seq=1 ttl=64 time=0.212 ms

-—- server0l ping statistics —-—-

1 packets transmitted, 1 received, 0% packet loss, time Oms

rtt min/avg/max/mdev = 0.212/0.212/0.212/0.000 ms

[vagrant@admin@l ~]$ ping -c 1 servero02

PING server02 (10.9.8.12) 56(84) bytes of data.

64 bytes from server02 (10.9.8.12): icmp_seq=1 ttl=64 time=0.220 ms

-—-- server02 ping statistics —--

1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.220/0.220/0.220/0.000 ms

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Configure SSH Authentication

Create an SSH key pair on admin01 with the ssh-keygen command. Accept all the defaults by
pressing ENTER. (Even press enter when prompted for a password as you do NOT want to assign a
password to the SSH key you are creating.)

Here is an example run ssh-keygen. (Portions typed are in bold.)

[vagrant@admin®@l ~]$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/vagrant/.ssh/id_rsa): (press
ENTER)

Enter passphrase (empty for no passphrase): (press ENTER)

Enter same passphrase again: (press ENTER)

Your didentification has been saved in /home/vagrant/.ssh/id_rsa.
Your public key has been saved in /home/vagrant/.ssh/id_rsa.pub.
The key fingerprint is:
19:84:ea:58:24:f3:7e:18:7c:79:8b:35:83:4b:al:af vagrant@adminOl
The key's randomart image 1is:

+-—[RSA 2048]-———+
I p I
| o . o. |
| x o+ I
I B = =o I
| =k =S |
|t = I
| o |
I 2 I
I I
e ittt +

Copy the public key to server01. When prompted to "continue connecting," type yes. When
prompted for the password, enter "vagrant".

[This space intentionally left blank. Instructions continue on the following page.]

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

[vagrant@admin@l ~]$ ssh-copy-id server0l

The authenticity of host 'server0l (10.9.8.11)' can't be established.
ECDSA key fingerprint is cb:39:b2:73:7c:39:29:84:92:73:de:f7:aa:2f:33:5b.
Are you sure you want to continue connecting (yes/no)? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to
filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are
prompted now it is to install the new keys

vagrant@server0l's password: vagrant

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'serverol'"
and check to make sure that only the key(s) you wanted were added.

Copy the public key to server02. When prompted for the password, enter "vagrant".

[vagrant@admin@l ~]$ ssh-copy-id server02

The authenticity of host 'server02 (10.9.8.12)' can't be established.
ECDSA key fingerprint is cb:39:b2:73:7c:39:29:84:92:73:de:f7:aa:2f:33:5b.
Are you sure you want to continue connecting (yes/no)? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to
filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are
prompted now it is to install the new keys

vagrant@server02's password: vagrant

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'server02'"
and check to make sure that only the key(s) you wanted were added.

Make sure you can log into each server without a password:

[vagrant@admin@l ~]$ ssh server0®l1l hostname
serveroOl
[vagrant@admin@l ~]$ ssh server02 hostname
server02

Navigate to the /vagrant Directory and Create the /vagrant/servers File

cd /vagrant
echo server0l > servers
echo server02 >> servers

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Confirm the contents of the file:

cat servers
servero0l
server02

Write the Shell Script

At this point, you can either create the script inside the virtual machine using the vim, nano, or
emacs text editors or you can create the file using your favorite text editor on your local operating
system. (Atom from https://atom.io/ is a good choice.)

When creating your script, refer back to the shell script requirements. If you want or need more
detailed steps to help you write your script, refer to the pseudocode at the end of this document. It
was intentionally placed at the end of the document because | want to encourage you to write the
script on your own. It's fine if you need the pseudocode. As you get more scripting practice, you'll
be able to script without any additional aids.

Test Your Script
Once you've finished writing the script, test it by:

Executing it with super user privileges.

Executing it without any options or arguments.

Executing it with an invalid option.

Executing the command "hostname" on all the servers listed in /vagrant/servers.
Executing the command "hostname" with the -n option.

Executing the command "uptime" with the -v option.

Executing the command "id" with the -s and -n options.

Executing the command "id" with the -s and -v options.

Creating a file named /vagrant/test that only contains the serverO1 host and executing the
"hostname" command against that list.

Passing a nonexistent file to the -f option.

Creating an account name test1 on all the servers listed in /vagrant/servers.
Creating an account named test2 with the comment "Test Two" on all servers.
Displaying the last two lines in the /etc/passwd file on all servers.

Executing a command that doesn't exist.

Taking a server off the network and then executing the script.

http://www.LinuxTrainingAcademy.com

https://atom.io/
http://www.linuxtrainingacademy.com/

Remember that the first time you execute the script you'll need to make sure it has executable
permissions.

chmod 755 run-everywhere.sh

Here is an example run of the script. (Portions typed are in bold.)

sudo ./run-everywhere.sh
Do not execute this script as root. Use the -s option instead.
Usage: ./run-everywhere.sh [-nsv] [-f FILE] COMMAND
Executes COMMAND as a single command on every server.
-f FILE Use FILE for the list of servers. Default: /vagrant/servers.

-n Dry run mode. Display the COMMAND that would have been executed and exit.
-s Execute the COMMAND using sudo on the remote server.
Y Verbose mode. Displays the server name before executing COMMAND.

echo ${?}

1

Make sure the script displays a usage message if we don't supply a command to execute on the
remote hosts.

./run-everywhere.sh
Usage: ./run-everywhere.sh [-nsv] [-f FILE] COMMAND
Executes COMMAND as a single command on every server.
-f FILE Use FILE for the 1list of servers. Default: /vagrant/servers.

-n Dry run mode. Display the COMMAND that would have been executed and exit.
-s Execute the COMMAND using sudo on the remote server.
Y Verbose mode. Displays the server name before executing COMMAND.

echo ${?}

1

Make sure the script displays usage message if we supply an invalid option

./run-everywhere.sh -x hostname
./run-everywhere.sh: illegal option -- x
Usage: ./run-everywhere.sh [-nsv] [-f FILE] COMMAND
Executes COMMAND as a single command on every server.
-f FILE Use FILE for the list of servers. Default: /vagrant/servers.

-n Dry run mode. Display the COMMAND that would have been
executed and exit.

-s Execute the COMMAND using sudo on the remote server.

-V Verbose mode. Displays the server name before executing
COMMAND .
echo ${?}

1

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Execute the "hostname" command.

./run-everywhere.sh hostname
server0Ol
server02

Execute the script using the dry run (-n) option.

./run-everywhere.sh -n hostname
DRY RUN: ssh -o ConnectTimeout=2 server0®l hostname
DRY RUN: ssh -o ConnectTimeout=2 server02 hostname

Execute the uptime command using the verbose (-v) option.

./run-everywhere.sh -v uptime
server0l

13:01:30 up 3:22, O users, Lload average: 0.00, 0.01, 0.03
server02

13:04:04 up 4 min, 0 users, load average: 0.01, 0.05, 0.04

Execute the script using the dry run (-n) and sudo (-s) options.

./run-everywhere.sh -ns 1id
DRY RUN: ssh -o ConnectTimeout=2 server®l sudo id
DRY RUN: ssh -o ConnectTimeout=2 server02 sudo 1id

Execute the id command using the verbose (-v) and sudo (-s) options.

./run-everywhere.sh -sv 1id

server0l

uid=0(root) gid=0(root) groups=0(root)
server02

uid=0(root) gid=0(root) groups=0(root)

Create a file named /vagrant/test that only contains the server01 host. Execute the hostname
command against that list.

echo server0l > test
./run-everywhere.sh -f test hostname
server0l

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Make sure that the script exits if provided with a server file that does not exist.

./run-everywhere.sh -f /path/to/nowhere hostname
Cannot open server list file /path/to/nowhere.

Add a test1 account on all the servers. Remember that creating accounts requires superuser (root)
privileges! Because the "useradd" command does not generate output, check to see if the
accounts were created by using the "id" command.

./run-everywhere.sh -s useradd testl
./run-everywhere.sh id testl

uid=1001(testl) gid=1001(testl) groups=1001(testl)
uid=1001(testl) gid=1001(testl) groups=1001(testl)

Add a test2 account with the comment of "Test Two" on all the servers. Because we want to use a
quoted string on the remote system, we have to put the command in quotes. To quote a quote, use
the opposing quotation mark.

For example, to preserve single quotes in a string, surround the string with double quotes:

echo "'Test Two'"
'"Test Two'

To preserve double quotes in a string, surround the string with single quotes:

echo ""Test Two"'
"Test Two"

If we want to preserve our quotes for the argument to the -c option, we need to make sure they are
quoted:

./run-everywhere.sh -ns 'useradd -c "Test Two" test2'

DRY RUN: ssh -o ConnectTimeout=2 server0l sudo useradd -c "Test Two" test2
DRY RUN: ssh -o ConnectTimeout=2 server02 sudo useradd -c "Test Two" test2
./run-everywhere.sh -s 'useradd -c "Test Two" test2'
./run-everywhere.sh id test2

uid=1002(test2) gid=1002(test2) groups=1002(test2)

uid=1002(test2) gid=1002(test2) groups=1002(test2)

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Check to see the the command made it to the password file for the test2 user.

./run-everywhere.sh -v tail -2 /etc/passwd
serveroOl
testl:x:1001:1001::/home/testl:/bin/bash
test2:x:1002:1002:Test Two:/home/test2:/bin/bash
server02
testl:x:1001:1001::/home/testl:/bin/bash
test2:x:1002:1002:Test Two:/home/test2:/bin/bash

Execute a command that does exist. Make sure the exit status of the script is non-zero.

./run-everywhere.sh i-like-eggs
bash: i-like-eggs: command not found
Execution on server0l failed.

bash: i-like-eggs: command not found
Execution on server02 failed.

echo $?

127

Power down one of the servers and execute a command using the script. Make sure the exit status
is non-zero.

exit
vagrant halt server02
==> server02: Attempting graceful shutdown of VM...
vagrant ssh admino1l
Last login: Mon Jan 29 12:08:50 2018 from 10.0.2.2
cd /vagrant
./run-everywhere.sh -v uptime
server01l
13:50:24 up 3:11, O users, Lload average: 0.00, 0.01, 0.03
server02
ssh: connect to host server02 port 22: Connection timed out
Execution on server02 failed.
echo $?
255

[This space intentionally left blank. Instructions continue on the following page.]

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Reference Material:
Vagrantfile for multinet

Here are the contents of the shellclass/multinet/Vagrantfile file with all the comments
removed.

Vagrant.configure(2) do |config]|
config.vm.box = "jasonc/centos7"

config.vm.define "admin@l" do |admin0@1l|

admin@l.vm.hostname = "adminOl"
admin@l.vm.network "private_network", ip: "10.9.8.10"
end

config.vm.define "server0l" do |serverOl|

server0l.vm.hostname = "serverQl"
server0l.vm.network "private_network", ip: "10.9.8.11"
end

config.vm.define "server02" do |server02|

server02.vm.hostname = "server02"
server02.vm.network "private_network", ip: "10.9.8.12"
end

end

[This space intentionally left blank. Instructions continue on the following page.]

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

Pseudocode

You can use the following pseudocode to help you with the logic and flow of your script.

Display the usage and exit.
Make sure the script 1is not being executed with superuser privileges.
Parse the options.
Remove the options while leaving the remaining arguments.
If the user doesn't supply at least one argument, give them help.

Anything that remains on the command line is to be treated as a single
command.

Make sure the SERVER_LIST file exists.
Loop through the SERVER_LIST
If it's a dry run, don't execute anything, just echo 1it.

Capture any non-zero exit status from the SSH_COMMAND and report to
the user.

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com/

